Investigation of Fractional Nonlinear Regularized Long-Wave Models via Novel Techniques

نویسندگان

چکیده

The main goal of the current work is to develop numerical approaches that use Yang transform, homotopy perturbation method (HPM), and Adomian decomposition analyze fractional model regularized long-wave equation. shallow-water waves ion-acoustic in plasma are both explained by first combines transform with He’s polynomials. In contrast, second polynomials method. Caputo sense applied derivatives. strategy’s effectiveness shown providing a variety integer-order graphs tables. To confirm validity each result, technique was substituted into described methods can be used find solutions these kinds equations as infinite series, when series closed form, they give precise solution. results support claim this approach simple, strong, efficient for obtaining exact nonlinear differential equations. strong contender contribute existing literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Solution Regularized Long-wave Equation by Using Modified Variational Iteration Method

In this paper, a regularized long-wave equation (RLWE) is solved by using the Adomian's decomposition method (ADM) , modified Adomian's decomposition method (MADM), variational iteration method (VIM), modified variational iteration method (MVIM) and homotopy analysis method (HAM). The approximate solution of this equation is calculated in the form of series which its components are computed by ...

متن کامل

Wave group dynamics in weakly nonlinear long-wave models

Wave group dynamics is studied in the framework of the extended Korteweg-de Vries equation. The nonlinear Schrodinger equation is derived for weakly nonlinear wave packets, and the condition for modulational instability is obtained. It is shown that wave packets are unstable only for a positive sign of the coe cient of the cubic nonlinear term in the extended Korteweg-de Vries equation, and for...

متن کامل

Stability analysis of fractional-order nonlinear Systems via Lyapunov method

‎In this paper‎, ‎we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov‎ ‎method‎. ‎To examine the obtained results‎, ‎we employe the developed techniques on test examples‎.

متن کامل

Scattering of Regularized-long-wave Solitary Waves

The Lagrangian density for the regularized-long-wave equation (also known as the BBM equation) is presented. Using the trial function technique, ordinary differential equations that describe the time dependence of the position of the peaks, amplitudes, and widths for the collision of two solitary waves are obtained. These equations are analyzed in the Born and “equal-width” approximations and c...

متن کامل

The Generalized Regularized Long Wave Equation

where  and  are positive constants, was first proposed by Peregrine [74] for modeling the propagation of unidirectional weakly nonlinear and weakly dispersive water waves. Later on Benjamine et al. [9] proposed the use of the RLW equation as a preferred alternative to the more classical Korteweg de Vries (KdV) equation to model a large class of physical phenomena. These authors showed that RL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2023

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym15010220